[1]
G. B. J. Busby et al., “Genetic analysis of scat reveals leopard Panthera pardus and cheetah Acinonyx jubatus in southern Algeria,” Oryx, vol. 43, no. 3, pp. 412–415, 2009.
[2]
G. B. J. Busby et al., “The peopling of Europe and the cautionary tale of Y chromosome lineage R-M269,” Proceedings of the Royal Society B: Biological Sciences, vol. 279, no. 1730, pp. 884–892, Mar. 2012, doi: 10.1098/rspb.2011.1044.
[3]
G. B. J. Busby, “Finding the Blues: an investigation into the origin and evolution of African American music,” MRes, Imperial College, London,UK, 2006.
[4]
S. Bertoncini et al., “A Y variant which traces the genetic heritage of ligures tribes,” Journal of Biological Research - Bollettino della Società Italiana di Biologia Sperimentale, vol. 85, no. 1, Nov. 2012, doi: 10.4081/jbr.2012.4087.
[5]
V. Coia et al., “Demographic Histories, Isolation and Social Factors as Determinants of the Genetic Structure of Alpine Linguistic Groups,” PLoS ONE, vol. 8, no. 12, p. e81704, Dec. 2013, doi: 10.1371/journal.pone.0081704.
[6]
G. Hellenthal et al., “A Genetic Atlas of Human Admixture History,” Science, vol. 343, no. 6172, pp. 747–751, Feb. 2014, doi: 10.1126/science.1243518.
[7]
S. J. Marks et al., “Static and moving frontiers: the genetic landscape of Southern African Bantu-speaking populations,” Molecular Biology and Evolution, p. msu263, Sep. 2014, doi: 10.1093/molbev/msu263.
[8]
I. Lazaridis et al., “Ancient human genomes suggest three ancestral populations for present-day Europeans,” Nature, vol. 513, no. 7518, pp. 409–413, Sep. 2014, doi: 10.1038/nature13673.
[9]
A. Cini, S. Patalano, A. Segonds-Pichon, G. Busby, R. Cervo, and S. Sumner, “Social parasitism and the molecular basis of phenotypic evolution,” Frontiers in Genetics, vol. 6, p. 32, 2015, doi: 10.3389/fgene.2015.00032.
[10]
F. Montinaro, G. Busby, V. L. Pascali, S. Myers, G. Hellenthal, and C. Capelli, “Unravelling the hidden ancestry of American admixed populations,” Nature Communications, vol. 6, Mar. 2015, doi: 10.1038/ncomms7596.
[11]
S. Tofanelli et al., “The Greeks in the West: genetic signatures of the Hellenic colonisation in southern Italy and Sicily,” European Journal of Human Genetics, Jul. 2015, doi: 10.1038/ejhg.2015.124.
[12]
C. Martinez-Cadenas et al., “The relationship between surname frequency and Y chromosome variation in Spain,” European Journal of Human Genetics, Apr. 2015, doi: 10.1038/ejhg.2015.75.
[13]
G. Busby et al., “The Role of Recent Admixture in Forming the Contemporary West Eurasian Genomic Landscape,” Current Biology, vol. 25, no. 19, pp. 2518–2526, May 2015, doi: 10.1016/j.cub.2015.08.007.
[14]
M. González-Santos et al., “Genome-Wide SNP Analysis of Southern African Populations Provides New Insights into the Dispersal of Bantu-Speaking Groups,” Genome Biology and Evolution, vol. 7, no. 9, pp. 2560–2568, Sep. 2015, doi: 10.1093/gbe/evv164.
[15]
G. Hellenthal et al., “The Kalash Genetic Isolate? The Evidence for Recent Admixture,” The American Journal of Human Genetics, vol. 98, no. 2, pp. 396–397, Feb. 2016, doi: 10.1016/j.ajhg.2015.12.025.
[16]
F. Montinaro et al., “Complex Ancient Genetic Structure and Cultural Transitions in Southern African Populations,” Genetics, vol. 205, no. 1, pp. 303–316, 2017, doi: 10.1534/genetics.116.189209.
[17]
G. Busby et al., “Admixture into and within sub-Saharan Africa,” eLife, vol. 5, p. e15266, Jun. 2016, doi: 10.7554/eLife.15266.
[18]
E. M. Leffler et al., “Resistance to malaria through structural variation of red blood cell invasion receptors,” Science, p. eaam6393, May 2017, doi: 10.1126/science.aam6393.
[19]
C. M. Ndila et al., “Human candidate gene polymorphisms and risk of severe malaria in children in Kilifi, Kenya: a case-control association study,” The Lancet Haematology, vol. 5, no. 8, pp. e333–e345, 2018, doi: https://doi.org/10.1016/S2352-3026(18)30107-8.
[20]
G. Band et al., “Insights into malaria susceptibility using genome-wide data on 17,000 individuals from Africa, Asia and Oceania,” Nature Communications, vol. 10, no. 1, p. 5732, Dec. 2019, doi: 10.1038/s41467-019-13480-z.
[21]
A. Bolli, P. Di Domenico, R. Pastorino, G. Busby, and G. Bottà, “Risk of Coronary Artery Disease Conferred by Low-Density Lipoprotein Cholesterol Depends on Polygenic Background,” Circulation, vol. 143, no., 2021, doi: 10.1161/CIRCULATIONAHA.120.051843.
[22]
D. Mujwara et al., “Integrating a Polygenic Risk Score for Coronary Artery Disease as a Risk-Enhancing Factor in the Pooled Cohort Equation: A Cost-Effectiveness Analysis Study,” Journal of the American Heart Association, vol., no., p. e025236, 2022, doi: 10.1161/JAHA.121.025236.
[23]
M. Mwenda, “Detection of B.1.351 SARS-CoV-2 Variant Strain — Zambia, December 2020,” MMWR. Morbidity and Mortality Weekly Report, vol. 70, 2021, doi: 10.15585/mmwr.mm7008e2.
[24]
K. S. Elliott et al., “Fine-Scale Genetic Structure in the United Arab Emirates Reflects Endogamous and Consanguineous Culture, Population History, and Geography,” Molecular Biology and Evolution, vol. 39, no. 3, p. msac039, Mar. 2022, doi: 10.1093/molbev/msac039.
[25]
D. Mujwara, J. Kintzle, P. Di Domenico, G. B. Busby, and G. Bottà, “Cost-effectiveness analysis of implementing polygenic risk score in a workplace cardiovascular disease prevention program,” Frontiers in Public Health, vol. 11, 2023, doi: 10.3389/fpubh.2023.1139496.
[26]
G. B. Busby, S. Kulm, A. Bolli, J. Kintzle, P. D. Domenico, and G. Bottà, “Ancestry-Specific Polygenic Risk Scores Are Risk Enhancers for Clinical Cardiovascular Disease Assessments,” Nature Communications, vol. 14, no. 1, p. 7105, Nov. 2023, doi: 10.1038/s41467-023-42897-w.
[27]
M. de Cesare et al., “Flexible and Cost-Effective Genomic Surveillance of P. Falciparum Malaria with Targeted Nanopore Sequencing,” Nature Communications, vol. 15, no. 1, p. 1413, Feb. 2024, doi: 10.1038/s41467-024-45688-z.
[28]
G. Busby, P. Craig, N. Yousfi, S. Hebbalkar, P. Di Domenico, and G. Bottà, “Genetic Assessments of Breast Cancer Risk That Do Not Account for Polygenic Background Are Incomplete and Lead to Incorrect Preventative Strategies,” medRxiv, p. 2021.08.13.21262050, 2021, doi: 10.1101/2021.08.13.21262050.
[29]
G. Busby et al., “Inferring adaptive gene-flow in recent African history,” bioRxiv, Jan. 2017, doi: 10.1101/205252.
[30]
T. J. Hayeck, G. B. J. Busby, S. Chun, A. C. F. Lewis, M. C. Roberts, and B. J. Vilhjálmsson, “Polygenic Risk Scores: Genomes to Risk Prediction,” Clinical Chemistry, vol. 69, no. 6, pp. 551–557, May 2023, doi: 10.1093/clinchem/hvad049.
[31]
P. E. Haffener et al., Adaptive Admixture at ACKR1 (the Duffy Locus) May Have Shaped Plasmodium Vivax Prevalence in Oman. bioRxiv, 2024, p. 2024.03.06.583766. doi: 10.1101/2024.03.06.583766.
[32]
G. B. J. Busby et al., Ancestry-Specific Polygenic Risk Scores Improve Clinical Assessments of Breast Cancer Risk in Diverse Populations. Research Square, 2024. doi: 10.21203/rs.3.rs-4022359/v1.
[33]
N. Tsoulos et al., “Polygenic Risk Score (PRS) Combined with NGS Panel Testing Increases Accuracy in Hereditary Breast Cancer Risk Estimation,” Diagnostics, vol. 14, no. 16, 2024, doi: 10.3390/diagnostics14161826.